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Why study networks

• (1990-): Barabási, Newman,

Watts...

• 100s of nodes → millions,

sparse, power law

• Computer science, biology,

internet, social media
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Community structure in networks

• Communities often correspond to important node features

• Community detection: discover communities from networks

Political blogs network (Adamic and Glance, 2005)
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Community structure in networks

• Communities often correspond to important node features

• Community detection: discover communities from networks

British MP Twitter network (Greene and Cunningham, 2013)
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Community structure: statistical models

Network communities Blockmodel approach

• Let An×n be the (binary, symmetric) adjacency matrix.

• P = E[A] has a block matrix structure.

• A two-step model-fitting process:

1. Community Detection (which vertex goes to which block)

2. Estimating other parameters of the statistical model
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Stochastic Blockmodel (SBM)

For a K -block network, let ωK×K be the (symmetric) matrix of

block-block probabilities.

Let c denote the membership vector with ci = r if the i th node

belongs to the r th community.

Then for i < j

Pij = ωcicj .

• Community structure: All nodes belonging to a community

are stochastically equivalent.

• Expected degree is identical for all nodes in a community.
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Degree Corrected Blockmodel (DCBM)

• Adds degree scaling parameters θi for each node to allow for a

broad degree distribution.

Pij = θiωcicjθj

where
∑

i∈Nr
θi = 1 ∀r = 1, . . . ,K .

• Allows a broad degree distribution, and nodes can have

different expected degree.

• Popular nodes have higher value of θ.
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Popularity of nodes

• Network feature closely associated with community structure.

• Popularity of the i th node in the r th community

Mir =
∑
j∈Nr

Aij .

• Model version

µir = E[Mir ]

• Under the DCBM, degree parameter θi inflates or deflates

node popularity uniformly across all communities.

• For i , j in same community,
µir
θi

=
µjr
θj

⇒ popularity ∝ degree, which is unrealistic.
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Popularity of nodes (pol blogs)

• Andrew Sullivan

• Conservative blogger

• Degree = 143

Liberal = 58 (41%)

Conservative = 85 (59%)

• Blogs for Bush

• Conservative blogger

• Degree = 301

Liberal = 5 (2%)

Conservative = 296 (98%)
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Popularity of nodes

• Under the DCBM, for two nodes in the same community,

popularity ∝ degree

• DCBM fits node degrees and detects communities well, but

inadequate for fitting node popularity.

observed pop (left) vs DCBM pop (right)
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Popularity of nodes

• Under the DCBM, for two nodes in the same community,
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• DCBM fits node degrees and detects communities well, but
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Proposed model

• PABM (popularity-adjusted blockmodel):

For a K -block network, let λn×K be popularity parameters.

Let c denote the membership vector, then for i < j

Pij = λicj
λjci

.

• DCBM is a special case of PABM: set λir = θi
√
ωci r , then

Pij = λicjλjci = (θi
√
ωcicj )(θj

√
ωcicj ) = θiωcicj θj .

• Has the structural flexibility to model node popularity in a

realistic way.
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Community detection and model fitting

• Likelihood modularity (profile likelihood):

QPABM(b) = 2
∑
i

∑
r

Mir log(Mir )−
∑
rs

Ors log(Ors).

• Community detection: Let c be the (unknown) true

community assignment and B be the set of all possible

community assignments.

ĉ = arg max
b∈B

QPABM(A, b)

• MLE of parameters:

λ̂ir =
Mir (ĉ)√
Oĉi r (ĉ)

.

where Osr =
∑

i∈Ns
Mir and Ns = {i ≤ n : ĉi = s}.
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Extreme points (Le et al, AoS 2016)

ĉ = arg max
b∈B

QPABM(A, b), λ̂ir =
Mir (ĉ)√
Oĉi r (ĉ)

• |B| = O(Kn), exhaustive search for maxima infeasible.

• Popular alternatives include greedy algorithms based

Kernighan-Lin algorithm.

• EP algorithm: exhaustive search over the O(nK−1) extreme

points of B.

• Extreme points of the projection of [1, 2, ...,K ]n onto the

space spanned by top K eigenvectors of A.
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Oĉi r (ĉ)

• |B| = O(Kn), exhaustive search for maxima infeasible.

• Popular alternatives include greedy algorithms based

Kernighan-Lin algorithm.

• EP algorithm: exhaustive search over the O(nK−1) extreme

points of B.

• Extreme points of the projection of [1, 2, ...,K ]n onto the

space spanned by top K eigenvectors of A.

14



Model-fitting algorithm

Input: A (adjacency matrix), K (number of communities) 1

1. Find BEP2, the set of extreme points.

2. For each b ∈ BEP , compute QPABM(A, b).

3.

ĉ = arg max
b∈BEP

QPABM(A, b), λ̂ir =
Mir (ĉ)√
Oĉi r (ĉ)

1There are methods to estimate K that can be run prior to this.
2There should be O(nK−1) extreme points.
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Consistency of community detection: heuristics

Goal: ĉ = arg maxe Q(e)→ c (true assignment).

Q̃(e) = population version of Q(e).

1. Show that Q(e) is uniformly (w.r.t. e) close to Q̃(e).

2. For Q̃(e), show that

• c = arg maxe Q̃(e) uniquely

• Q̃(e) is uniformly continuous (w.r.t. e)

3. By 1, Q(ĉ) is close to Q̃(ĉ) and Q(c) is close to Q̃(c).

But Q(ĉ) > Q(c) and Q̃(c) > Q̃(ĉ) 2(i).

Hence by 2(ii), ĉ must be close to c.
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Consistency of community detection

1. The number of communities K is fixed and known.

2. Sparsity: ρn = ω( log(n)√
n

) [implies nρ2
n

log2(n)
→∞ as n→∞.]

Q(e) =
2

n2ρn

∑
i

∑
r

Mir log

(
Mir√
Oei r

)

Q̃(e) =
2

n2ρn

∑
i

∑
r

µir (e) log

(
µir (e)√
orei (e)

)
Lemma 1

Under Assumptions 1 and 2,

max
e
|Q(e)− Q̃(e)| P→ 0.

This establishes an uniform concentration bound for the

modularity function and its population version.
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Consistency of community detection

3 Identifiability: Λab = Λba for any communities a, b, where

Λab :=
∑
j∈Na

λjb.

.

4 Detectability: for any two distinct communities a, b, and

any two nodes j1 ∈ Na, j2 ∈ Nb, the set
{

pij1
pij2

}n

i=1
takes at

least K + 1 distinct values.

Lemma 2

Under Assumptions 3 and 4, Q̃(e) is ‘uniquely’ maximized at the

correct assignment c, i.e., for any candidate assignment e,

Q̃(e) ≤ Q̃(c)

where equality holds if and only if e ∈ Π(c), and Π is the

symmetric group of all permutations of {1, . . . ,K}.
18



Consistency of community detection

We define error as

ξn(e) = min
e′∈Π(e)

1

n

n∑
i=1

I [e ′i 6= ci ],

where disagreement is minimized over all label permutations of the

candidate assignment.

Theorem

Under Assumptions 1 - 4,

ξn(ĉ)
P→ 0

where ĉ = arg maxb∈B QPABM(A, b).

Sengupta and Chen (2015)
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Consistency of parameter estimation

5 Community size: all communities as per true assignment, c ,

are of size Θ(n), i.e., the same order as n.

6 Signal strength: If the average interaction level between any

two large, distinct subsets of the vertex set is non-zero, it

must be at least of the order of ρn
log n . Formally, let

Γ1, Γ2 ⊂ {1, . . . , n}, Γ1 ∩ Γ2 = φ, |Γ1| = Θ(n), |Γ2| = Θ(n),

then

1

|Γ1||Γ2|
∑

(i ,j)∈Γ1×Γ2

pij =

{
0 pij = 0 ∀ (i , j) ∈ Γ1 × Γ2

Ω
(

ρn
log n

)
otherwise

where |S | is the cardinality of set S .
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Consistency of parameter estimation

We define the parameter estimation error as

∆n(ĉ) =
1√
n
||λ̂n×K − λn×K ||F .

Theorem:

Under Assumptions 1 - 6,

∆n(ĉ)
P→ 0.
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Simulation Study

• K = 2, n = 400, n1 = n2 = 200 and n = 1000, n1 = n2 = 500.

• Node popularity varies:

category 1 nodes have most (80% or more) of their neighbors

in own community, category 2 nodes have neighbors uniformly

in two communities.

• Homophily parameter h:

expected number of intra-community edges is h times the

expected number of inter-community edges (community

detection easier with higher h).
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Simulation Study: community detection

n = 400 (left) and n = 1000 (right). Solid lines represent PABM networks,

dashed lines represent DCBM networks. Triangles represent results from PABM

modularity and dots represent results from DCBM modularity. Shaded area

represents standard deviation. For networks from PABM (solid lines), the

PABM modularity (triangles) outperforms the DCBM modularity (dots)

substantially. For networks from DCBM (dashed lines), the PABM modularity

(triangles) performs only slightly worse than the DCBM modularity (dots).
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Simulation Study: parameter estimation

n = 400 (left) and n = 1000 (right). Solid lines represent PABM networks,

dashed lines represent DCBM networks. Triangles represent results from PABM

modularity and dots represent results from DCBM modularity. Shaded area
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Simulation Study: Akaike Information Criterion (AIC)

n = 400 (left) and n = 1000 (right). Solid lines represent PABM networks,

dashed lines represent DCBM networks. Triangles represent results from PABM

modularity and dots represent results from DCBM modularity. Shaded area

represents standard deviation. For networks from PABM (solid lines), the

PABM modularity (triangles) outperforms the DCBM modularity (dots)

substantially. For networks from DCBM (dashed lines), the PABM modularity

(triangles) performs only slightly worse than the DCBM modularity (dots).
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Real networks: community detection

Network Nodes PABM DCBM

Political Blogs 1222 4.99% (61) 5.40% (66)

British MP 329 0.00% (0) 0.61% (2)

DBLP 2203 2.81% (62) 5.17% (114)

Community detection error rates (number of misclustered nodes in

brackets)
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Real networks: goodness of fit

F1 =
1

2E

n∑
i=1

K∑
r=1

(µ̂ir (ĉ)−Mir (c))2 , (1)

F2 =
1

2E

n∑
i=1

K∑
r=1

(µ̂ir (c)−Mir (c))2 , (2)

where E is the observed number of network edges.

F1 F2

Network PABM DCBM PABM DCBM

Political Blogs 0.057 1.155 0.002 1.883

British MP 0.002 0.282 0.002 0.284

DBLP 2.255 52.430 0.000 61.425

Goodness of fit measures for node popularity
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Popularity of nodes (pol blogs)

observed pop (left) vs DCBM pop (right)
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Popularity of nodes (pol blogs)
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Popularity of nodes (British MP)

observed pop (left) vs DCBM pop (right)
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Popularity of nodes (British MP)

observed pop vs DCBM pop vs PABM pop
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Summary

• PABM vastly improves modeling of node popularity in

networks.

• Likelihood modularity is consistent and provides superior

insights on well-studied real networks.

• The extreme points approach provides a computationally

feasible method for model fitting and community detection.

Sengupta, S. and Chen, Y. (2017). A blockmodel for node

popularity in networks with community structure. Journal of the

Royal Statistical Society: Series B (Statistical Meethodology).

Invited for minor revision.
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Next steps: statistical questions

• Too many parameters: active and inactive node popularity for

sparse networks

• Penalized estimation

• Thresholding

• Spectral clustering with node popularity

• Network monitoring using node popularities
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Next steps: computational/algorithmic questions

• How to find extreme points for K > 2?

• How to scale up to large networks (millions of nodes)?

• How to make this efficient?

THANKS!
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