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Background

Problem of Denseness
“Nice” statistical network models generate dense graphs
Real-world networks are sparse

Projective + Exchangeable
Challenge: seems that projective + exchangeable ⇒ dense
Projective: intuitively, collecting more data doesn’t change the
observation you already have
Exchangeable: intuitively, vertex labels don’t carry information about
graph structure
Lots of recent work using alternative notions of exchangeability, or
abandoning it altogether
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Sampling for (sparse) exchangeable random graphs | Overview

Big Picture

Finite vs infinite exchangeability is critical
How are graphs of different size related?
Understand this by sampling schemes associated with models
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Graphon Generative Model

Graphon / Dense Exchangeable

Given a graphon W : X2→ [0,1], sample a random graph of n vertices:
1 Assign each vertex i a latent feature xi ∈ X independently
2 Given the features, include each edge (i , j) independently with

probability W (xi ,xj)

Examples
Stochastic block models (and descendants)
Latent space models
Many approaches to probabilistic matrix factorization, topic
modeling, feature allocation
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Graphex Model (VR15, BCCH16)

Graphex / Sparse Exchangeable

Given a graphex W : X 2→ [0,1], sample a size s ∈ R+ graph by:
1 Sample features: a Poisson process {(θi ,xi )} on [0,s]×X .
2 Given the features, include edge (θi ,θj) with probability W (xi ,xj).
3 Include θi as a vertex whenever θi participates in at least one edge.

Examples
Dense exchangeable / graphon models (essentially)
Caron & Fox 2014 and related models
Sparse graphs, power law degree distributions, small world behaviour
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Dense Exchangeable Models

Dense Exchangeable
Basic object: infinite random binary matrix (Xij)

Random graphs: (Gn)n∈N defined by taking adjacency matrix to be
upper left n×n submatrix of (Xij)

Joint exchangeability of infinite random matrices

(Xij)
d
= (Xσ(i)σ(j)) for all permutations σ ∈ S∞ of the positive integers

Aldous–Hoover
A random adjacency matrix is exchangeable if and only if it’s generated
by some (dense) graphon
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Caron & Fox 2014: (Sparse) Exchangeable Graphs

Key insights
adjacency matrix → adjacency measure
matrix exchangeability → point process exchangeability
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Figure: graph, adjacency matrix, and adjacency measure



Questions?

Sparse and Dense exchangeable graphs are both finitely vertex
exchangeable
How do we escape Aldous–Hoover?
What is the key difference between these models?



Sampling



Sampling

Dense Case
To generate a k vertex graph according to W :

1 Generate a n vertex graph generated by W

2 Sample k vertices at random and return the induced subgraph



p-sampling

Definition (p-sampling)
A p-sampling of a graph G is a random subgraph given by selecting each
vertex of G independently with probability p, and then returning the
induced edge set.

Theorem (VR16)
Let (Gs)s∈R+ be generated by W . If samp(Gs , r/s) is an r/s-sampling of
Gs , then

samp(Gs , r/s)
d
= Gr



p-sampling

Definition (p-sampling)
A p-sampling of a graph G is a random subgraph given by selecting each
vertex of G independently with probability p, and then returning the
induced edge set.

Theorem (VR16)
Let (Gs)s∈R+ be generated by W . If samp(Gs , r/s) is an r/s-sampling of
Gs , then

samp(Gs , r/s)
d
= Gr



p-sampling defines graphex process models

Definition
Call (Gs)s∈R+ an unlabeled random graph process indexed by R+ if, for all
s, Gs is a finite unlabeled graph, and, for all s ≤ t, it holds that Gs ⊆ Gt

in the sense that there is some subgraph of Gt that is isomorphic to Gs .

Theorem (BCCV17)
Let (Gs)s∈R+ be an unlabeled random graph process such that es ↑∞ a.s.
as s→ ∞. For each s ∈R+ and p ∈ (0,1), let Smplp(Gs) be a p-sampling
of Gs . If for all s ∈ R+ and p ∈ (0,1) it holds that

Smplp(Gs)
d
= Gps ,

then there is some (possibly random, possibly non-integrable) almost
surely non-zero graphex W that generates (Gs)s∈R+ .



p-sampling defines graphex process models

Exchangeability and Sampling
Sparse exchangeability is equivalent to p-sampling invariance

Exchangeable Models
Dense: allows isolated vertices
Sparse: doesn’t.
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Summary

Sparse exchangeability is equivalent to p-sampling invariance
Key property of sparse exchangeable models: no isolated vertices
Bonus result: exchangeability gives a general non-parametric
consistent estimator for the graphex
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