Sampling for (sparse) exchangeable random graphs

Sampling for (sparse) exchangeable random graphs

Victor Veitch with Daniel Roy with Christian Borgs, Jennifer Chayes, Henry Cohn

Background

Problem of Denseness

- "Nice" statistical network models generate dense graphs
- Real-world networks are sparse

Projective + Exchangeable

- Challenge: seems that projective + exchangeable ⇒ dense
- Projective: intuitively, collecting more data doesn't change the observation you already have
- Exchangeable: intuitively, vertex labels don't carry information about graph structure
- Lots of recent work using alternative notions of exchangeability, or abandoning it altogether

Background

Problem of Denseness

- "Nice" statistical network models generate dense graphs
- Real-world networks are sparse

Projective + Exchangeable

- Challenge: seems that projective + exchangeable ⇒ dense
- Projective: intuitively, collecting more data doesn't change the observation you already have
- Exchangeable: intuitively, vertex labels don't carry information about graph structure
- Lots of recent work using alternative notions of exchangeability, or abandoning it altogether

Big Picture

- Finite vs infinite exchangeability is critical
- How are graphs of different size related?
- Understand this by sampling schemes associated with models

Graphon Generative Model

Graphon / Dense Exchangeable

Given a graphon $W : \mathbb{X}^2 \to [0,1]$, sample a random graph of n vertices:

- **I** Assign each vertex i a latent feature $x_i \in \mathbb{X}$ independently
- 2 Given the features, include each edge (i,j) independently with probability $W(x_i,x_j)$

- Stochastic block models (and descendants)
- Latent space models
- Many approaches to probabilistic matrix factorization, topic modeling, feature allocation

Graphon Generative Model

Graphon / Dense Exchangeable

Given a graphon $W : \mathbb{X}^2 \to [0,1]$, sample a random graph of n vertices:

- **I** Assign each vertex i a latent feature $x_i \in \mathbb{X}$ independently
- 2 Given the features, include each edge (i,j) independently with probability $W(x_i,x_j)$

- Stochastic block models (and descendants)
- Latent space models
- Many approaches to probabilistic matrix factorization, topic modeling, feature allocation

Graphex Model (VR15, BCCH16)

Graphex / Sparse Exchangeable

Given a graphex $W: \mathcal{X}^2 \to [0,1]$, sample a size $s \in \mathbb{R}_+$ graph by:

- **1** Sample features: a Poisson process $\{(\theta_i, x_i)\}$ on $[0, s] \times \mathcal{X}$.
- 2 Given the features, include edge (θ_i, θ_i) with probability $W(x_i, x_i)$.
- Include θ_i as a vertex whenever θ_i participates in at least one edge.

- Dense exchangeable / graphon models (essentially)
- Caron & Fox 2014 and related models
- Sparse graphs, power law degree distributions, small world behaviour

Graphex Model (VR15, BCCH16)

Graphex / Sparse Exchangeable

Given a graphex $W: \mathcal{X}^2 \to [0,1]$, sample a size $s \in \mathbb{R}_+$ graph by:

- **1** Sample features: a Poisson process $\{(\theta_i, x_i)\}$ on $[0, s] \times \mathcal{X}$.
- 2 Given the features, include edge (θ_i, θ_i) with probability $W(x_i, x_i)$.
- **3** Include θ_i as a vertex whenever θ_i participates in at least one edge.

- Dense exchangeable / graphon models (essentially)
- Caron & Fox 2014 and related models
- Sparse graphs, power law degree distributions, small world behaviour

Exchangeability

Dense Exchangeable Models

Dense Exchangeable

- Basic object: infinite random binary matrix (X_{ij})
- Random graphs: $(G_n)_{n \in \mathbb{N}}$ defined by taking adjacency matrix to be upper left $n \times n$ submatrix of (X_{ij})

Joint exchangeability of infinite random matrices

 $(X_{ij})\stackrel{d}{=} (X_{\sigma(i)\sigma(j)})$ for all permutations $\sigma\in S_\infty$ of the positive integers

Aldous-Hoover

A random adjacency matrix is exchangeable if and only if it's generated by some (dense) graphon

Dense Exchangeable Models

Dense Exchangeable

- Basic object: infinite random binary matrix (X_{ij})
- Random graphs: $(G_n)_{n \in \mathbb{N}}$ defined by taking adjacency matrix to be upper left $n \times n$ submatrix of (X_{ij})

Joint exchangeability of infinite random matrices

$$(X_{ij})\stackrel{d}{=} (X_{\sigma(i)\sigma(j)})$$
 for all permutations $\sigma\in S_\infty$ of the positive integers

Aldous-Hoover

A random adjacency matrix is exchangeable if and only if it's generated by some (dense) graphon

Dense Exchangeable Models

Dense Exchangeable

- Basic object: infinite random binary matrix (X_{ij})
- Random graphs: $(G_n)_{n \in \mathbb{N}}$ defined by taking adjacency matrix to be upper left $n \times n$ submatrix of (X_{ij})

Joint exchangeability of infinite random matrices

$$(X_{ij})\stackrel{d}{=} (X_{\sigma(i)\sigma(j)})$$
 for all permutations $\sigma\in S_\infty$ of the positive integers

Aldous-Hoover

A random adjacency matrix is exchangeable if and only if it's generated by some (dense) graphon

Caron & Fox 2014: (Sparse) Exchangeable Graphs

Key insights

- lacktriangle adjacency matrix ightarrow adjacency measure
- lacktriangle matrix exchangeability o point process exchangeability

Figure: graph, adjacency matrix, and adjacency measure

Questions?

- Sparse and Dense exchangeable graphs are both finitely vertex exchangeable
- How do we escape Aldous-Hoover?
- What is the key difference between these models?

Sampling

Sampling

Dense Case

To generate a k vertex graph according to W:

- I Generate a n vertex graph generated by W
- 2 Sample k vertices at random and return the induced subgraph

p-sampling

Definition (p-sampling)

A p-sampling of a graph G is a random subgraph given by selecting each vertex of G independently with probability p, and then returning the induced edge set.

Theorem (VR16)

Let $(G_s)_{s \in \mathbb{R}_+}$ be generated by W. If samp $(G_s, r/s)$ is an r/s-sampling of G_s , then

$$\operatorname{samp}(G_s, r/s) \stackrel{d}{=} G_r$$

p-sampling

Definition (p-sampling)

A p-sampling of a graph G is a random subgraph given by selecting each vertex of G independently with probability p, and then returning the induced edge set.

Theorem (VR16)

Let $(G_s)_{s \in \mathbb{R}_+}$ be generated by W. If samp $(G_s, r/s)$ is an r/s-sampling of G_s , then

$$\operatorname{samp}(G_s, r/s) \stackrel{d}{=} G_r$$

p-sampling defines graphex process models

Definition

Call $(G_s)_{s \in \mathbb{R}_+}$ an unlabeled random graph process indexed by \mathbb{R}_+ if, for all s, G_s is a finite unlabeled graph, and, for all $s \leq t$, it holds that $G_s \subseteq G_t$ in the sense that there is some subgraph of G_t that is isomorphic to G_s .

Theorem (BCCV17)

Let $(G_s)_{s \in \mathbb{R}_+}$ be an unlabeled random graph process such that $e_s \uparrow \infty$ a.s. as $s \to \infty$. For each $s \in \mathbb{R}_+$ and $p \in (0,1)$, let $\mathrm{Smpl}_p(G_s)$ be a p-sampling of G_s . If for all $s \in \mathbb{R}_+$ and $p \in (0,1)$ it holds that

$$\operatorname{Smpl}_p(G_s) \stackrel{d}{=} G_{ps},$$

then there is some (possibly random, possibly non-integrable) almost surely non-zero graphex W that generates $(G_s)_{s \in \mathbb{R}_+}$.

p-sampling defines graphex process models

Exchangeability and Sampling

Sparse exchangeability is equivalent to p-sampling invariance

Exchangeable Models

- Dense: allows isolated vertices
- Sparse: doesn't.

p-sampling defines graphex process models

Exchangeability and Sampling

Sparse exchangeability is equivalent to p-sampling invariance

Exchangeable Models

- Dense: allows isolated vertices
- Sparse: doesn't.

Summary

- Sparse exchangeability is equivalent to *p*-sampling invariance
- Key property of sparse exchangeable models: no isolated vertices
- Bonus result: exchangeability gives a general non-parametric consistent estimator for the graphex