
Community detection in networks with unobserved edges

Detecting communities in networks provides a means
of coarse-graining the complex interactions or relations
(represented by network edges) between entities (repre-
sented by nodes) and offer a more interpretable summary
of a complex system. However, in many complex systems
the exact relationship between entities is either unknown
or unobserved. Instead, we may observe interdependent
signals from the nodes, such as time series, which we may
use to infer these relationships. Over the past decade, a
multitude of algorithms have been developed to group
multivariate time series into communities with applica-
tions in finance, neuroscience, and climate research. For
example, identifying communities of assets whose prices
vary coherently can help investors gain a deeper under-
standing of the foreign exchange market1,2 or manage
their market risk by investing in assets belonging to dif-
ferent communities3. Global factors affecting our climate
are reflected in the community structure derived from sea
surface temperatures4.

Current methods for detecting communities when net-
work edges are unobserved, typically involve a compli-
cated process that is highly sensitive to specific design
decisions and parameter choices. In this work, we de-
velop a Bayesian hierarchical model for multivariate time
series data that provides an end-to-end community de-
tection algorithm that does not extract information as a
sequence of point estimates, but instead propagates un-
certainties from the raw data to the community labels.

The variability of high-dimensional time series is of-
ten the result of a small number of common, underly-
ing factors5. For example, the stock price of oil and gas
companies may be positively affected by rising oil prices,
whereas the manufacturing industry, which consumes oil
and gas, is likely to suffer from rising oil prices. Moti-
vated by this observation, we model the multivariate time
series y using a latent factor model, i.e. the n-dimesional
observations at each time step t are generated by a lin-
ear transformation A of a lower-dimensional, latent time
series x and additive observation noise. The entries Aiq

of the n× p factor loading matrix encode how the obser-
vations of time series i are affected by the latent factor
q. Using our earlier example, the entry of A connecting
an oil company with the (unobserved) oil price would be
positive, whereas the corresponding entry for an automo-
bile company would be negative.

Our approach naturally supports multiscale commu-
nity detection as well as the selection of an optimal
scale using model comparison. We validate and study
the properties of the algorithm using a series of syn-
thetic datasets. We then apply it to daily returns of
constituents of the S&P100 index to identify salient com-
munities of similar stocks and to climate data of US cities
to identify homogeneous climate zones.

Figure 1 shows the detected communities from the
daily returns of constituents of the S&P100 index of
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Figure 1. Detected communities of stocks are correlated with
industry sectors. (a) heat map of the factor loadings inferred
from constituents of the S&P100 index. Each row corresponds
to a stock and each column corresponds to a factor. (b) a two-
dimensional t-SNE embedding of the factor loading matrix
with cluster labels including credit card (CC) and fast-moving
consumer goods (FMCG) companies.

the stocks of 100 large companies in the United States.
We obtained 252 daily closing prices for all stocks dur-
ing 20166. The community assignments capture salient
structure in the data. For example, the three smallest
communities each having only two members consist of
two credit card companies, two defence companies, and
two chemical companies (which have since merged to
form the conglomerate DowDuPont). Other specialised
communities consist of financial services companies (e.g.,
Citigroup, Goldman Sachs), as well as manufacturing and
shipping (e.g., Boeing, Caterpillar, FedEx, United Parcel
Service).
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