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Introduction
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Polyadic Networks
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 Collaboration (author/paper, sponsor/bill)
« Communication (receiver/email, participant/forum thread)
e Composition (word/sentence, ingredient/recipes, agent/group)
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Historically, polyadic networks have often
been treated through dyadic (graph)
techniques.
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Argument for Today

e Dyadic graph techniques can produce unreliable results on
polyadic data sets.

e We should instead use natively polyadic metrics and models.

e Random hypergraph null models suggest new perspectives on
some conventional wisdom in network science.
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“Is This Data Set Degree-Assortative?”
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e Dyadic: Assortative! p = 0.99,p < 0.01.
e Polyadic: Disassortative! p = —0.25,p < 0.01.
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More Precisely...

“Is the observed data more assortative by degree than would be
expected at random?”

We need three ingredients:

e A data representation that will determine the node degrees.
e A measure of assortativity.
e A null model.
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The Dyadic Approach (“Assortative!”)
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e Data representation: Least productive nodes have highest
degrees.

e Measurement: Single interaction gets counted 15 times in p.

e Null model: Dyadic nulls models compare to counterfactuals
with 17 two-author papers.
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Hypergraph Configuration Models



Hypergraphs

A hypergraph G = (V, E) consists of a vertex set V and an edge-
set E. E is a multiset of subsets of V. Multi-edges are ok. The

node degree is the number of incident edges (not number of
neighbors. )

Image: Wikipedia



Configuration Models for Hypergraphs

Observe G with degree sequence deg(G) = d € R”
and edge dimension sequence dim(G) = k € R".

Null space: all graphs with the same degree sequence
and edge dimension sequence.

The vertex-labeled hypergraph configuration model 74  is the
uniform distribution on this null space.



Metropolis-Hastings Sampling

1. Initialize Gy € vd,k-
2.Fori =0,1,2, ...

e Proposal:
= Select edges A and I uniformly at random from E;.

» Randomly reshuffle nodes between A and I, preserving |A|
and [I].

e Accept the proposal with probability a(A,I") =
generating Gj,.

1
mamr '’

3. Return G; at regular intervals of length .
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Applications



Thanks for the Data!

Check for
updates

Simplicial closure and higher-order link prediction
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Networks provide a powerful formalism for modeling complex the complementary direction of group interactions, as outlined
systems by using a model of pairwise interactions. But much in the examples above, and use the term higher-order model in
of the structure within these systems involves interactions that  this sense.

take place among more than two nodes at once—for example A key reason for the lack of large-scale studies in higher-order

Time-stamped polyadic data sets: emails; drug co-occurrence;
Congressional cosponsorships; academic coauthorships; forum
threads...




Assortativity in Polyadic Networks



Hypergraph Assortativity
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Projected and Hypergraph Assortativities
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Significance Tests

Projected Uniform
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Learnings

e Degree-assortativity can be studied without projections.

e Doing so better matches our intuitions about what assortativity
“should mean” in many cases.

e The results can vary significantly from projected dyadic
approaches.



Revisiting Clustering



The Global Clustering Coefficient

“Your friends tend to know each other..”

C— 3 X Number of triangles

Number of 2-stars

Recall (Strogatz and Watts 1998): Social networks display
clustering; configuration models don’t; we need a small world
model...



Triadic Closure in Polyadic Networks
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e “Trivial” triadic closure from within edges.

e “Nontrivial” triadic closure from correlations between edges
(Newman 2001).

e How to distinguish? Compare to a null distribution...



Null Significance Tests

C (C >h (C >dyadic

congress-bills 0.61 0.60(0.00) 0.45(0.00)
coauth-MAG-Geology 0.82 0.82(0.00) 0.00 (0.00)
email-Enron 0.66 0.82(0.01) 0.64(0.01)
email-Eu 0.54 0.60(0.01) 0.40 (0.00)

tags-ask-ubuntu 0.57 0.61(0.01) 0.19 (0.00)
threads-math-sx 0.29 0.20(0.01) 0.04(0.00)

Hypothesis: When multi-way interactions are “cheap,” potential
triangles get absorbed by polyadic edges. When coordination is
required (e.g. collaborations), triangles may be more prevalent.



Edge Intersection Profiles



The Simplicial Clustering Hypothesis

Hypothesis: Edges have larger intersections than would be
expected by random chance.

Related to simplicial closure hypothesis (Patania, Petri, and
Vaccarino 2017; Benson et al. 2018).



Intersection Profile

Definition: The edge intersection profile of a hypergraph is the
empirical distribution

r(j) =P(ANT] =),
where A and I are uniformly random edges.

Large r(j) = intersections of size j are common.



Intersection Profile of Enron Emails
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Large intersections much more common than expected under any
null.



Null Profiles for Large Networks

What if a network is too big for Monte Carlo sampling?
Let i, () = n([ANT| =JlAlI =k, II'l = 7).
Theorem: When {(d?) < oo,

| RN\ (1@ = (@)Y
co=asorn()(0)(H4259)

with high probability as n — 0.




Intersection Profiles for Large Networks
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Learnings

e Intersection profiles are natively polyadic, scalable measures of
edge correlations.

e Some empirical networks are significantly clustered in this
measure; others less so.




Wrapping Up



Takeaways

e Dyadic graph techniques can produce unreliable results on
polyadic data sets.

e We should instead use natively polyadic metrics and models.

e Random hypergraph null models suggest new perspectives on
some conventional wisdom in network science.



Potential Future Directions

e Community detection in polyadic data sets
e Optimal projections (when you must...)
e Mean-field theory for hypergraph dynamics
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