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outline

I Brief history of causal inference using network data.
I What is network dependence, and why is it a problem?
I Two partial solutions:

1. Subsample conditionally independent observations

I naive but easy to understand, implement, and generalize,
I dependence due to contagion;

2. Semiparametric approach based on the efficient influence function

I more sophisticated and powerful but less intuitive and difficult to
implement.
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I Each node is associated with an outcome, treatment, covariates.
I Causal effects of interest include peer effects, treatment effects,

spillover/interference effects, effects of network interventions, ...
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Two challenges for causal inference using network data:
I nonparametric identification of causal effects (interference, confounding by

homophily, positivity violations),
I statistical inference in the presence of network dependence.
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brief history of causal inference using network data

I
Christakis and Fowler (2007, 2008, 2009, 2010, 2011, 2012) initiated a

wave of interest in estimating peer effects from social network data.

I
To examine peer effects, they fit models
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I
Widely publicized results include significant peer effects for obesity,

smoking, alcohol consumption, sleep habits, etc.

I
Researchers began using similar models to assess peer effects across

a wide range of disciplines and problems (e.g. Ali and Dwyer, 2009;
Cacioppo et al., 2009; 2008; Lazer et al., 2010; Rosenquist et al., 2010,
Wasserman 2012).

slide 5



brief history causal inference using network data

I
There is growing interest in randomization-based inference for networks

(e.g. Toulis & Kao, 2013; Bowers et al., 2013; Aronow & Samii, 2013; Eckles et al.,
2014, Choi 2016).

I
Work on interference usually relies on randomization and on the

assumption of partial interference, but may provide a solution to the

problem of network dependence in cluster randomized trials (e.g. Sobel,
2006; Hong & Raudenbush, 2006; Rosenbaum, 2007; Hudgens & Halloran, 2008;
Tchetgen Tchetgen & VanderWeele, 2012; Liu & Hudgens, 2014).

I
Mathematical modeling of contagious processes avoids these problems

but is highly dependent on parametric assumptions about agent-based

processes (e.g. Steglich, Snijders & Pearson, 2007; Railsback & Grimm, 2011).
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sources of network dependence

I
Latent variables cause outcomes among close social contacts to be

more correlated than among distant contacts. (E.g. homophily,

geography, shared culture, shared genetics.)

I
Similar to spatial dependence.
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sources of network dependence

I
Contagion implies information barrier structures, e.g.⇥
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2
⇤
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3

⇤
.

I
When a network is observed at a single time point, this will resemble

latent variable dependence.

I
If the network is observed frequently, so that the outcome can’t diffuse

very far between observations, we can harness conditional independence

restrictions to facilitate inference.
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why is dependence a problem?

I Statistical analysis that incorrectly assumes independence will be
invalid.

I This is a very hard problem when dependence is due to latent
variables and is unstructured.

I It’s not quite as hard when dependence is due to contagion.
I Two problems for traditional frequentist inference:

I
CLT may not hold,

I
Standard error estimates and resulting inference will be

anticonservative.
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I
If Ȳ ! µ, the rate of convergence is determined by
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naive solution

joint work with Tyler VanderWeele

I Summary: Create conditionally independent units; analyze with
standard, i.i.d. models, but conditional on “information barriers.”

I Randomly sample non-overlapping groups from the network.

I This will allow us to condition on an “information barrier.”
I Now we can estimate conditional estimands using standard

statistical machinery like GLMs.
I

The residuals will be uncorrelated across subjects despite the

dependence structure.

slide 11



I Regress Y t+1 on Y t conditional on
�
Y t�1 

For details see Ogburn & VanderWeele, Vaccines, contagion, and social
networks (forthcoming in AoAS)
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naive solution

I Pros
I

easy to understand, easy to implement

I
generalizable to many estimands and models (in principle)

I
may be feasible if full data structure is unavailable, as long as

information barriers can be found

I Cons
I

dependence due to contagion only

I
sample size < true effective sample size

I requires throwing away data
I low power

I
estimand must be conditional

I more appropriate for causal effects than for sample means
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more principled solution

joint work with Oleg Sofrygin, Ivan Diaz, Mark van der Laan

I Extension of semiparametric, influence-function-based inference
from the iid setting.

I We define a model M , which restricts the observed data
distribution in some way(s).

I We are interested in estimating a parameter y under model M ,
i.e. a functional of the observed data.

I Under M , there is a class of influence functions for y .
I

Each (RAL) estimator ŷ is paired with an IF j, and in the iid

setting

p
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I
Because the IF has mean 0 at the true parameter value, we can use

it to create unbiased estimating functions for y.
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I van der Laan (2014) extended this approach to settings with
interference and/or contagion.

I
Not partial interference, but each subject can only interfere with

 K other subjects.

I We extend van der Laan (2014) to social network settings:
I K grows with n
I

highly connected “hubs” may exert undo influence

I
estimation of causal effects of interventions on features of network

topology

I This framework can handle longitudinal data, but for simplicity we
focus on the single-time-point setting.
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I We make independence assumptions that entail
I

there is no unmeasured confounding,

I C
i

? C
j

if i and j have no friends in common,

I Y
i

? Y
j

|parents and X
i

? X
j

|parents if i and j have no friends in

common.
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I The simplest kind of intervention deterministically sets X to a
user-specified value x⇤:

I Y ⇤
i

is the counterfactual outcome of individual i in a hypothetical
world in which P(X = x⇤) = 1.

I
Peer effects: X

i

could be a function of alters’ outcomes at a

previous time point.

I We are interested in E
⇥
Ȳ ⇤⇤ , where Ȳ ⇤ = 1

n

Ân
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⇤
i

.

slide 17



I E
⇥
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I The efficient influence function for y (in a particular
semiparametric model) is
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I Turning the efficient IF into an estimating equation and solving it
gives us an estimate ỹ of y .

I ỹ is asymptotically efficient and doubly robust.
I If each subject interferes with  K other subjects, as in van der

Laan (2014), then
p
n (ỹ �y)! N (0,var(IF ))

I Instead, we let K
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stochastic network interventions

I We can also identify the effects of stochastic interventions that
replace f

X

with a new, user-specified distribution:

I For each x in the support of X , X
i

is set by the intervention to x
with probability given by the stochastic intervention distribution.
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stochastic network interventions

I Examples include
I

interventions that add, remove, or relocate ties in the network.

I
interventions that change the dependence of a subject’s treatment

on other subjects’ covariates, or of a subject’s outcome on other

subjects’ covariates and treatments.

I
Interventions on summary features of network topology:

I An intervention on features of the network topology replaces T
with the members of a class T ⇤ of n⇥n adjacency matrices that
share the intervention features, stochastically according to some
probability distribution gT⇤ over T ⇤.

I Whether or not we can define, identify, and estimate interventions
involving these features of network topology hinges crucially on the
positivity assumption.

I e.g. degree / centrality
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principled approach

I Pros
I

uses all of the available data

I
estimands are unconditional

I
efficient and doubly robust estimation

I Cons
I

hard(er) to understand, hard to implement

I
may not be clear in finite samples what to do with K and with hubs

For details see Ogburn et al, Causal inference for social network data (available
on arXiv)
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summary and next steps

I Although it is accepted practice in many areas, it can be very
dangerous to assume that observations are independent when they
may not be!

I When it’s available, we can use the information barrier structure to
facilitate inference even when subjects are connected in
complicated ways.

I Future work is needed to adapt results from spatial statistics to
deal with non-independence of observations.

I
This is necessary for latent variable dependence.

I
It is desirable when network dependence is due to contagion,

because it permits inference from more realistic/feasible data

structures.

slide 23



Thank you
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Why can’t we use spatial dependence results?

I Network topology doesn’t naturally correspond to Euclidean space.
I

In order to embed a network in Rd

, we would have to let d grow

with sample size.

I
Spatial results require d to be fixed.

I Population growth is usually assumed to occur at the boundaries of
the d-dimensional space.

I
It’s not clear how to define boundaries in networks.

I Mixing assumptions and m-dependence don’t imply bounded
correlation structure.

I
In spatial data most observations are distant from one another.

I
The maximum network-based distance between two observations

may be very small.

I
The distance distribution may not be right-skewed enough.

slide 25


