Standard errors for regression on relational data with exchangeable errors

Frank W. Marrs Colorado State University frank.marrs@colostate.edu

Collaborators

Bailey K. Fosdick Colorado State University

Tyler H. McCormick University of Washington

Network regression

- response Y: weighted, directed, between actors i and j
- covariates X: individual or pairwise attributes
- Model linear relationship of covariates and response

$$y_{ij} = \mathbf{x}_{ij}^T \boldsymbol{\beta} + \xi_{ij}$$

 $Y = X\boldsymbol{\beta} + \boldsymbol{\xi} \in \mathbb{R}^{n(n-1)}$

Network regression

$$y_{ij} = \mathbf{x}_{ij}^T \boldsymbol{\beta} + \xi_{ij}$$

 $Y = X\boldsymbol{\beta} + \boldsymbol{\xi} \in \mathbb{R}^{n(n-1)}$

 response Y: weighted, directed, between actors i and j

Network regression

$$y_{ij} = \mathbf{x}_{ij}^T \boldsymbol{\beta} + \xi_{ij}$$

- Goal: inference about β
 - point estimates $(\widehat{\boldsymbol{\beta}})$
 - confidence intervals $(\widehat{\boldsymbol{\beta}} \pm \widehat{\operatorname{se}} \{\widehat{\boldsymbol{\beta}}\})$
- ξ_{ij} highly structured error
 - i.e. ξ_{ij} and ξ_{ik} share a node, expect correlation

Linear Regression

Recall Ordinary Least Squares

$$\widehat{\boldsymbol{\beta}} = \operatorname{argmin}_{\beta} ||Y - X\boldsymbol{\beta}||_{2}^{2} = (X^{T}X)^{-1}X^{T}Y$$
$$Var(\widehat{\boldsymbol{\beta}}|X) = (X^{T}X)^{-1}X^{T}\Sigma X (X^{T}X)^{-1}$$
$$\Sigma = Var(\boldsymbol{\xi})$$

- X is $(n^2 n) \times p$ matrix of covariates
- Y and $\boldsymbol{\xi}$ are $(n^2 n)$ vectors of relations and errors
- For inference on $\widehat{\beta}$, need an estimate of Σ

Assumes that non-overlapping pairs independent

 $Cov(\boldsymbol{\xi}_{BA}, \boldsymbol{\xi}_{CD}) = 0$

• Model nonzero entries in Σ with residual products

 $Cov(\xi_{BA},\xi_{AC}) = e_{BA}e_{AC}$

 $e_{AB} := y_{AB} - \mathbf{x}_{ij}^T \widehat{\boldsymbol{\beta}}$

	BA	СА	DA	AB	СВ	DB	AC	ВС	DC	AD	BD	CD
BA	e _{BA} e _{BA}	e _{CA} e _{BA}	e _{DA} e _{BA}	e _{AB} e _{BA}	e _{cB} e _{BA}	e _{DB} e _{BA}	e _{AC} e _{BA}	e _{BC} e _{BA}		e _{AD} e _{BA}	$e_{BD}e_{BA}$	
СА	e _{BA} e _{CA}	e _{CA} e _{CA}	e _{DA} e _{CA}	e _{AB} e _{CA}	e _{CB} e _{CA}		e _{AC} e _{CA}	e _{BC} e _{CA}	e _{DC} e _{CA}	e _{AD} e _{CA}		$e_{CD}e_{CD}$
DA	e _{BA} e _{DA}	e _{CA} e _{DA}	e _{DA} e _{DA}	e _{AB} e _{DA}		e _{DB} e _{DA}	e _{AC} e _{DA}		e _{DC} e _{DA}	e _{AD} e _{DA}	e _{BD} e _{DA}	e _{cD} e _{DA}
AB	e _{BA} e _{AB}	e _{CA} e _{AB}	e _{DA} e _{AB}	e _{AB} e _{AB}	e _{CB} e _{AB}	e _{DB} e _{AB}	e _{AC} e _{AB}	e _{BC} e _{AB}		e _{AD} e _{AB}	e _{BD} e _{AB}	
СВ	e _{BA} e _{CB}	e _{CA} e _{CB}		e _{AB} e _{CB}	e _{CB} e _{CB}	e _{DB} e _{CB}	e _{AC} e _{CB}	e _{BC} e _{CB}	e _{DC} e _{CB}		e _{BD} e _{CB}	e _{cD} e _{CB}
DB	e _{BA} e _{DB}		e _{DA} e _{DB}	e _{AB} e _{DB}	e _{CB} e _{DB}	e _{DB} e _{DB}		e _{BC} e _{DB}	e _{DC} e _{DB}	e _{AD} e _{DB}	$e_{BD}e_{DB}$	$e_{CD}e_{DB}$
AC	e _{BA} e _{AC}	e _{cA} e _{AC}	e _{DA} e _{AC}	e _{AB} e _{AC}	e _{CB} e _{AC}		e _{AC} e _{AC}	e _{BC} e _{AC}	e _{DC} e _{AC}	e _{AD} e _{AC}		e _{cD} e _{AC}
BC	e _{BA} e _{BC}	e _{CA} e _{BC}		e _{AB} e _{BC}	e _{CB} e _{BC}	e _{DB} e _{BC}	e _{AC} e _{BC}	e _{BC} e _{BC}	e _{DC} e _{BC}		e _{BD} e _{BC}	e _{cD} e _{BC}
DC		e _{cA} e _{DC}	e _{DA} e _{DC}		e _{cB} e _{DC}	e _{DB} e _{DC}	e _{AC} e _{DC}	e _{BC} e _{DC}	e _{DC} e _{DC}	e _{AD} e _{DC}	e _{BD} e _{DC}	e _{cD} e _{DC}
AD	e _{BA} e _{AD}	e _{ca} e _{ad}	e _{DA} e _{AD}	e _{AB} e _{AD}		e _{DB} e _{AD}	e _{AC} e _{AD}		e _{DC} e _{AD}	e _{AD} e _{AD}	e _{BD} e _{AD}	e _{cD} e _{AD}
BD	e _{BA} e _{BD}		$e_{DA}e_{BD}$	$e_{AB}e_{BD}$	e _{cB} e _{BD}	$e_{DB}e_{BD}$		$e_{BC}e_{BD}$	$e_{DC}e_{BD}$	$e_{AD}e_{BD}$	$e_{BD}e_{BD}$	$e_{CD}e_{BD}$
CD		e _{CA} e _{CD}	e _{DA} e _{CD}		e _{CB} e _{CD}	e _{DB} e _{CD}	e _{AC} e _{CD}	$e_{BC}e_{CD}$	e _{DC} e _{CD}	e _{AD} e _{CD}	$e_{BD}e_{CD}$	e _{cD} e _{CD}

$$\widehat{\Sigma}_{DC} = \prod_{AC}^{DI}$$

 $n(n-1) \times n(n-1)$

Issues:

- More estimates than data points, $O(n^3) > O(n^2)$
- No sharing of information
- Singular with probability 1
- Can we add a reasonable assumption to improve the estimate?

- Many network models are exchangeable: e.g. latent space, stochastic block, etc.
- Intuition: Ordering of rows/columns uninformative
- ξ jointly exchangeable if, for any permutation π(.),
 P({ξ_{ij} : i ≠ j, 1 ≤ i, j ≤ n}) = P({ξ_{π(i)π(j)} : i ≠ j, 1 ≤ i, j ≤ n})

(akin to homogenous variance assumption)

Original ξ

Permuted ξ

- Major contribution: Covariance matrix of jointly exchangeable vector $\pmb{\xi}$ has 5 unique covariances and 1 variance, regardless of n
- We explicitly define this matrix for the first time

Ċ___.

Ċ

Ċ___ Ċ .__

Ċ

Ċ.

Ċ

Ċ

Ċ

	ξ_{BA}	ξ_{CA}	ξ_{DA}	ξ_{AB}	ξ_{CB}	ξ_{DB}	ξ_{AC}	ξ_{BC}	ξ_{DC}	ξ_{AD}	ξ_{BD}	ξ_{CD}
ξ_{BA}	σ^2	ϕ_b	ϕ_b	ϕ_a	ϕ_d	ϕ_d	ϕ_d	ϕ_c		ϕ_d	ϕ_c	
ξ_{CA}	ϕ_b	σ^2	ϕ_b	ϕ_d	ϕ_c		ϕ_a	ϕ_d	ϕ_d	ϕ_d		ϕ_c
ξ_{DA}	ϕ_b	ϕ_b	σ^2	ϕ_d		ϕ_c	ϕ_d		ϕ_c	ϕ_a	ϕ_d	ϕ_d
ξ_{AB}	ϕ_a	ϕ_d	ϕ_d	σ^2	ϕ_b	ϕ_b	ϕ_c	ϕ_d		ϕ_c	ϕ_d	
ξ_{CB}	ϕ_d	ϕ_c		ϕ_b	σ^2	ϕ_b	ϕ_d	ϕ_a	ϕ_d		ϕ_d	ϕ_c
ξ_{DB}	ϕ_d		ϕ_c	ϕ_b	ϕ_b	σ^2		ϕ_d	ϕ_c	ϕ_d	ϕ_a	ϕ_d
ξ_{AC}	ϕ_d	ϕ_a	ϕ_d	ϕ_c	ϕ_d		σ^2	ϕ_b	ϕ_b	ϕ_c		ϕ_d
ξ_{BC}	ϕ_c	ϕ_d		ϕ_d	ϕ_a	ϕ_d	ϕ_b	σ^2	ϕ_b		ϕ_c	ϕ_d
ξ_{DC}		ϕ_d	ϕ_c		ϕ_d	ϕ_c	ϕ_b	ϕ_b	σ^2	ϕ_d	ϕ_d	ϕ_a
ξ_{AD}	ϕ_d	ϕ_d	ϕ_a	ϕ_c		ϕ_d	ϕ_c		ϕ_d	σ^2	ϕ_b	ϕ_b
ξ_{BD}	ϕ_c		ϕ_d	ϕ_d	ϕ_d	ϕ_a		ϕ_c	ϕ_d	ϕ_b	σ^2	ϕ_b
ξ_{CD}		ϕ_c	ϕ_d		ϕ_c	ϕ_d	ϕ_d	ϕ_d	ϕ_a	ϕ_b	ϕ_b	σ^2

Exchangeable estimator

Maintain independence assumption from DC

 $Cov(\xi_{ij},\xi_{kl}) = 0$ when $\{i,j\} \cap \{k,l\} = \emptyset$

- Pool across all relations to estimate 5 nonzero terms in $\widehat{\Sigma}_E$
- Estimate $\hat{\sigma}^2$, $\hat{\phi}_i$ with mean of products of OLS residuals
- Projection of $\widehat{\Sigma}_{DC}$ onto subspace of exchangeable covariance matrices

Exchangeable estimator

- Adds assumption of joint exchangeability to DC estimator
- Shares information: should see reduced variability
- Should see improved performance when assumption is reasonable
 - Covariates explain all variability except for exchangeable structure
 - Heterogeneities small relative to variability across 5
 parameters

IID Errors

Probability true coefficient pertaining to each covariate is in 95% confidence interval

Exchangeable Errors

Probability true coefficient pertaining to each covariate is in 95% confidence interval

Nonexchangeable Errors

Probability true coefficient pertaining to each covariate is in 95% confidence interval

Summary

- Dyadic clustering approach may be noisy
- Many common network models are jointly exchangeable
- Exchangeable error covariance matrix has 6 unique terms
 - One of which we assume is zero
- Estimates of $\operatorname{se}\{\widehat{oldsymbol{eta}}\}$ based on exchangeable error structure perform well
 - exchangeable structure
 - robust to non-exchangeable structure

Frank Marrs

Colorado State University

frank.marrs@colostate.edu

http://www.stat.colostate.edu/~marrs

Marrs, F.W., McCormick, T.H., and Fosdick, B.K. (2017) "Standard errors for regression on relational data with exchangeable errors", arXiv:1701.05530. [<u>Preprint</u>]