Standard errors for regression on relational data with exchangeable errors

Frank W. Marrs
Colorado State University
frank.marrs@colostate.edu

Collaborators

Bailey K. Fosdick
Colorado State University

Tyler H. McCormick University of Washington

Network regression

- response Y : weighted, directed, between actors i and j
- covariates X : individual or pairwise attributes
- Model linear relationship of covariates and response

$$
\begin{gathered}
y_{i j}=\mathbf{x}_{i j}^{T} \boldsymbol{\beta}+\xi_{i j} \\
Y=X \boldsymbol{\beta}+\boldsymbol{\xi} \in \mathbb{R}^{n(n-1)}
\end{gathered}
$$

MOUNT SINAI SCHOOL OF MEDICINE

BAYLOR COLLGEE OF MEDICINE
CASE WESTERN RESERVVE UNIVERSITY
JOHNS HOPKINS UNIVERSITY

Network regression

$y_{i j}=\mathbf{x}_{i j}^{T} \boldsymbol{\beta}+\xi_{i j}$
$Y=X \boldsymbol{\beta}+\boldsymbol{\xi} \in \mathbb{R}^{n(n-1)}$

Network regression

$$
y_{i j}=\mathbf{x}_{i j}^{T} \boldsymbol{\beta}+\xi_{i j}
$$

- Goal: inference about $\boldsymbol{\beta}$
- point estimates $(\widehat{\boldsymbol{\beta}})$
- confidence intervals $(\widehat{\boldsymbol{\beta}} \pm \widehat{\operatorname{se}}\{\widehat{\boldsymbol{\beta}}\})$
- $\xi_{i j}$ highly structured error
- i.e. $\xi_{i j}$ and $\xi_{i k}$ share a node, expect correlation

Linear Regression

- Recall Ordinary Least Squares

$$
\begin{gathered}
\widehat{\boldsymbol{\beta}}=\operatorname{argmin}_{\beta}\|Y-X \boldsymbol{\beta}\|_{2}^{2}=\left(X^{T} X\right)^{-1} X^{T} Y \\
\operatorname{Var}(\widehat{\boldsymbol{\beta}} \mid X)=\left(X^{T} X\right)^{-1} X^{T} \Sigma X\left(X^{T} X\right)^{-1} \\
\Sigma=\operatorname{Var}(\boldsymbol{\xi})
\end{gathered}
$$

- X is $\left(n^{2}-n\right) \times p$ matrix of covariates
- Y and $\boldsymbol{\xi}$ are $\left(n^{2}-n\right)$ vectors of relations and errors
- For inference on $\widehat{\boldsymbol{\beta}}$, need an estimate of Σ

Dyadic Clustering

- Assumes that non-overlapping pairs independent

$$
\begin{array}{r|c|c|c|c|}
& A & B & C & D \\
A & & \xi_{A B} & \xi_{A C} & \xi_{A D} \\
\hline \boldsymbol{\xi}=\begin{array}{c|c|c|c|}
& \xi_{B A} & & \xi_{B C} \\
\hline & \xi_{B D} \\
\hline C & \xi_{C A} & \xi_{C B} & \\
\hline & \xi_{C D} \\
\hline & \xi_{D A} & \xi_{D B} & \xi_{D C} \\
\hline
\end{array} \\
\widehat{\operatorname{Cov}}\left(\xi_{B A}, \xi_{C D}\right)=0
\end{array}
$$

Dyadic Clustering

- Model nonzero entries in Σ with residual products

$$
\begin{gathered}
\widehat{\operatorname{Cov}}\left(\xi_{B A}, \xi_{A C}\right)=e_{B A} e_{A C} \\
e_{A B}:=y_{A B}-\mathbf{x}_{i j}^{T} \widehat{\boldsymbol{\beta}}
\end{gathered}
$$

Dyadic Clustering

Dyadic Clustering

- Issues:
- More estimates than data points, $O\left(n^{3}\right)>O\left(n^{2}\right)$
- No sharing of information
- Singular with probability 1
- Can we add a reasonable assumption to improve the estimate?

Exchangeability

- Many network models are exchangeable: e.g. latent space, stochastic block, etc.
- Intuition: Ordering of rows/columns uninformative
- $\boldsymbol{\xi}$ jointly exchangeable if, for any permutation $\pi($.$) ,$

$$
\mathbb{P}\left(\left\{\xi_{i j}: i \neq j, 1 \leq i, j \leq n\right\}\right)=\mathbb{P}\left(\left\{\xi_{\pi(i) \pi(j)}: i \neq j, 1 \leq i, j \leq n\right\}\right)
$$

(akin to homogenous variance assumption)

Exchangeability

$$
\pi(\{A, B, C, D\})=\operatorname{Swap} B \text { and } D
$$

	A	B	C	D			A	D	C	B
A		$\xi_{A B}$	$\xi_{A C}$	$\xi_{A D}$		A		$\xi_{A D}$	$\xi_{A C}$	$\xi_{A B}$
B	$\xi_{B A}$		$\xi_{B C}$	$\xi_{B D}$	\mathbb{P}	D	$\xi_{D A}$		$\xi_{D C}$	$\xi_{D B}$
C	$\xi_{C A}$	$\xi_{C B}$		$\xi_{C D}$		C	$\xi_{C A}$	$\xi_{C D}$		$\xi_{C B}$
D	$\xi_{\text {DA }}$	$\xi_{D B}$	$\xi_{D C}$			B	$\xi_{B A}$	$\xi_{B D}$	$\xi_{B C}$	

Original $\boldsymbol{\xi}$
Permuted $\boldsymbol{\xi}$

Exchangeability

- Major contribution: Covariance matrix of jointly exchangeable vector $\boldsymbol{\xi}$ has 5 unique covariances and 1 variance, regardless of n
- We explicitly define this matrix for the first time

Exchangeability
$\xi_{B A} \quad \xi_{C A} \quad \xi_{D A} \quad \xi_{A B} \quad \xi_{C B} \quad \xi_{D B} \quad \xi_{A C} \quad \xi_{B C} \quad \xi_{D C} \quad \xi_{A D} \quad \xi_{B D} \quad \xi_{C D}$

$\xi_{B A}$	σ^{2}	ϕ_{b}	ϕ_{b}	ϕ_{a}	ϕ_{d}	ϕ_{d}	ϕ_{d}	ϕ_{c}		ϕ_{d}	ϕ_{c}	
$\xi_{C A}$	ϕ_{b}	σ^{2}	ϕ_{b}	ϕ_{d}	ϕ_{c}		ϕ_{a}	ϕ_{d}	ϕ_{d}	ϕ_{d}		ϕ_{c}
$\xi_{D A}$	ϕ_{b}	ϕ_{b}	σ^{2}	ϕ_{d}		ϕ_{c}	ϕ_{d}		ϕ_{c}	ϕ_{a}	ϕ_{d}	ϕ_{d}
$\xi_{A B}$	ϕ_{a}	ϕ_{d}	ϕ_{d}	σ^{2}	ϕ_{b}	ϕ_{b}	ϕ_{c}	ϕ_{d}		ϕ_{c}	ϕ_{d}	
$\xi_{C B}$	ϕ_{d}	ϕ_{c}		ϕ_{b}	σ^{2}	ϕ_{b}	ϕ_{d}	ϕ_{a}	ϕ_{d}		ϕ_{d}	ϕ_{c}
$\xi_{D B}$	ϕ_{d}		ϕ_{c}	ϕ_{b}	ϕ_{b}	σ^{2}		ϕ_{d}	ϕ_{c}	ϕ_{d}	ϕ_{a}	ϕ_{d}
$\xi_{A C}$	ϕ_{d}	ϕ_{a}	ϕ_{d}	ϕ_{c}	ϕ_{d}		σ^{2}	ϕ_{b}	ϕ_{b}	ϕ_{c}		ϕ_{d}
$\xi_{B C}$	ϕ_{c}	ϕ_{d}		ϕ_{d}	ϕ_{a}	ϕ_{d}	ϕ_{b}	σ^{2}	ϕ_{b}		ϕ_{c}	ϕ_{d}
$\xi_{D C}$		ϕ_{d}	ϕ_{c}		ϕ_{d}	ϕ_{c}	ϕ_{b}	ϕ_{b}	σ^{2}	ϕ_{d}	ϕ_{d}	ϕ_{a}
$\xi_{A D}$	ϕ_{d}	ϕ_{d}	ϕ_{a}	ϕ_{c}		ϕ_{d}	ϕ_{c}		ϕ_{d}	σ^{2}	ϕ_{b}	ϕ_{b}
$\xi_{B D}$	ϕ_{c}		ϕ_{d}	ϕ_{d}	ϕ_{d}	ϕ_{a}		ϕ_{c}	ϕ_{d}	ϕ_{b}	σ^{2}	ϕ_{b}
$\xi_{C D}$		ϕ_{c}	ϕ_{d}		ϕ_{c}	ϕ_{d}	ϕ_{d}	ϕ_{d}	ϕ_{a}	ϕ_{b}	ϕ_{b}	σ^{2}

Exchangeable estimator

- Maintain independence assumption from DC

$$
\operatorname{Cov}\left(\xi_{i j}, \xi_{k l}\right)=0 \text { when }\{i, j\} \cap\{k, l\}=\varnothing
$$

- Pool across all relations to estimate 5 nonzero terms in $\widehat{\Sigma}_{E}$
- Estimate $\widehat{\sigma}^{2}, \widehat{\phi}_{i}$ with mean of products of OLS residuals
- Projection of $\widehat{\Sigma}_{D C}$ onto subspace of exchangeable covariance matrices

Exchangeable estimator

- Adds assumption of joint exchangeability to DC estimator
- Shares information: should see reduced variability
- Should see improved performance when assumption is reasonable
- Covariates explain all variability except for exchangeable structure
- Heterogeneities small relative to variability across 5 parameters

IID Errors

$\mathbf{1}_{i} \mathbf{1}_{j}$
 $\left|x_{3 i}-x_{3 j}\right|$
 $x_{4 i j}$

 Probability true coefficient pertaining to each covariate is in 95\% confidence interval

Exchangeable Errors

$$
\left|x_{3 i}-x_{3 j}\right|
$$

$$
x_{4 i j}
$$

Probability true coefficient pertaining to each covariate is in 95\% confidence interval

Nonexchangeable Errors

$\mathbf{1}_{i} \mathbf{1}_{j}$

$$
\left|x_{3 i}-x_{3 j}\right|
$$

$x_{4 i j}$

Probability true coefficient pertaining to each covariate is in 95\% confidence interval

Summary

- Dyadic clustering approach may be noisy
- Many common network models are jointly exchangeable
- Exchangeable error covariance matrix has 6 unique terms
- One of which we assume is zero
- Estimates of se $\{\widehat{\boldsymbol{\beta}}\}$ based on exchangeable error structure perform well
- exchangeable structure
- robust to non-exchangeable structure

Thank you!

Frank Marrs
Colorado State University
frank.marrs@colostate.edu
http://www.stat.colostate.edu/~marrs
Marrs, F.W., McCormick, T.H., and Fosdick, B.K. (2017) "Standard errors for regression on relational data with exchangeable errors", arXiv:1701.05530. [Preprint]

