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Continuous-Time Event-Based Dynamic

Networks

Relational event data
with fine-grained
timestamps
— Facebook wall posts
(Viswanath et al., 2009)

Represent events as
triplets (i, j,t)

* Goal: build statistical

model for these
relations over time
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Models for Static Networks

* If we discard timestamps, events become edges (i, j) in
a static network

* Represent network by N X N adjacency matrix A
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Models for Discrete-Time Dynamic Networks

* If we aggregate events over time windows, we get a
discrete-time snapshot-based network representation
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* Discrete-time SBMs (Yang et al., 201 |; Xu and Hero, 2014;
Xu, 2015; Matias and Mlele 20I6)
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* Trade-offs in choosing snapshot length
— Too long: loses temporal resolution
— Too short:increases number of snapshots and causes model to

forget too quickly due to short-term memory
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The Block Point Process Model (BPPM)

* Our approach: Model event triplets (i, ], t)
directly using SBM-like generative structure

— Divide nodes into K classes forming p = K
blocks (assuming directed events)

— Generate times of events in each block using a
point process model

— Randomly associate event with a pair of nodes
(i,J) in the block (thinning)

— We use an exponential Hawkes process model in
practice



Our Contributions

* We prove that static networks resulting from the
BPPM follow an SBMas N — oo

— We provide an upper bound on the deviation from
independence for finite N
* We develop a principled inference procedure for

the BPPM using local search initialized by spectral
clustering

— Scales to 5,000+ nodes and 100,000+ events
* We demonstrate that the BPPM is superior to

discrete-time network models regardless of
snapshot length



Comparison with Discrete-Time SBM

* Prediction task: Attempt to predict time to
next event (Facebook wall post) in each block

— 3,586 nodes and 137,170 events in data set
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Relationship to SBM

* Identical distribution of adjacency matrix
entries within block satisfied by BPPM
generative procedure

* But independence of entries is not satisfied!

— Denote deviation from independence by
(5[] = Pr(aij = 0|(L,-;fj: = 0) — Pr(a,;,;j = 0)
51 = PI‘({I?;j = 0|{‘lifjf = 1) — Pr(aij = 0)
Theorem (Asymptotic Independence Theorem). Consider an adjacency matrix A constructed from

the BPPM over some time interval [t1,t5). Then, for any two entries a;; and ay j both in block b, the
deviation from independence given by 0, 01 defined in (1) is bounded in the following manner:

100, |01] < min {1, pp/np}

where i, denotes the expected number of events in block b in [t ,t3), and ny, denotes the size of block
b. In the limit as the block size ny, — 00, dg, 01 — 0 provided py, is fixed or growing at a slower rate
than ny. Thus a;; and a; ;» are asymptotically independent in the block size ny,.



